Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Liang-Zhong Xu,* Shuang-Hua Yang, Zhi-Guo Jiang, Guan-Ping Yu and Guo-Dong Si

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.130$
Data-to-parameter ratio $=16.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(2,4-Difluorophenyl)-1-[3-(2-fluorophenyl)-oxiran-2-yl]methanone

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$, the bond lengths and angles are within normal ranges. The crystal packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Epoxides are often used in the synthesis of organic compounds (Taylor et al., 2000; Subburaj et al.,2002). Their ring-opening reactions (Wroblewski \& Halajewska, 2002) can be used in the preparation of polyfunctional cyclic compounds. They can also be applied in stereo- and regioselective syntheses (Tan et al., 2004), which could afford several diastereomeric epoxides (Subbiah et al., 1999). In our search for new epoxides, the title compound, (I), has been synthesized. We report its crystal structure here.

(I)

The bond lengths and angles in (I) (Fig. 1) are within normal ranges (Table 1). The geometric parameters of the oxirane ring, $\mathrm{C} 1 / \mathrm{C} 2 / 01$, are in good agreement with those found in the literature (Baures et al.., 1990). The mean planes $P 1$ ($\mathrm{F} 1 / \mathrm{F} 2 / \mathrm{C} 3-\mathrm{C} 9$) and $P 2$ ($\mathrm{F} 3 / \mathrm{C} 1 / \mathrm{C} 10-\mathrm{C} 15$) make dihedral angles of 54.71 (3) and $77.79(2)^{\circ}$, respectively, with the oxirane ring.

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Received 23 March 2005 Accepted 29 March 2005 Online 9 April 2005

Figure 2
The packing of (I), viewed approximately along the c axis. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

The crystal packing (Fig. 2) is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Experimental

A mixture of 2-bromo-1-(2,4-difluorophenyl)ethanone (0.02 mol , 4.70 g), 2-fluorobenzaldehyde ($0.02 \mathrm{~mol}, 2.48 \mathrm{~g}$) and water $(50 \mathrm{ml})$ was stirred for 1 h at room temperature. The solution was then filtered and concentrated, and the solid product was purified by recrystallization from ethanol to afford the title compound (yield $4.25 \mathrm{~g}, 85 \%$). Single crystals of (I) suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2}$

$M_{r}=278.22$
Monoclinic, $P 2_{1} / c$
$a=12.429$ (2) \AA
$b=13.359$ (2) \AA
$c=7.6176$ (13) \AA
$\beta=103.414$ (2) ${ }^{\circ}$
$V=1230.3$ (3) \AA^{3}
$Z=4$
$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1564
reflections
$\theta=2.3-22.0^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.24 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.962, T_{\text {max }}=0.980$
8121 measured reflections

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043
$$

$w R\left(F^{2}\right)=0.130$
$S=1.05$
2949 reflections
182 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0455 P)^{2}\right. \\
& +0.1661 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.35 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.011 \text { (2) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

F1-C5	$1.341(2)$	O1-C1	$1.424(2)$
F2-C7	$1.344(2)$	O2-C3	$1.2124(19)$
F3-C11	$1.358(2)$	C1-C2	$1.474(2)$
O1-C2	$1.418(2)$		
C2-O1-C1	$62.47(11)$	O1-C2-C1	$58.94(11)$
C2-C1-C10	$122.48(15)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$118.60(16)$

Table 2
Hydrogen-bond geometry ($\left(\AA{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.38	$3.356(2)$	173
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 6 \cdots \mathrm{O}^{2 i}$	0.93	2.39	$3.262(2)$	157

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x, y, z+1$.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ or $0.98 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Baures, P. W., Eggleston, D. S., Flisak, J. R., Gombatz, K., Lantos, I., Mendelson, W. \& Remich, J. J. (1990). Tetrahedron Lett. 31, 6501-6504.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Subburaj, K., Okamoto, S., Sato, F. (2002). J. Org. Chem. 67, 1024-1026.
Subbiah, R., Sangavanaicker, S., Subbu, P. \& Hewlins, M. J. E. (1999). Tetrahedron, 55, 9309-9316.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Taylor, S. K. (2000). Tetrahedron, 56, 1149-1163.
Tan, W., Sha, L. \& Zhao, B. X. (2004). Chin. J. Synth. Chem. 11, 384-390.
Wroblewski, A. E. \& Halajewska, W. A. (2002). Eur. J. Org. Chem. 16, 2758 2763.

